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- Currently a Machine Learning Scientist at
Genentech (New York office)

- UIUC Physics Ph.D. (2016-2022), MS at NTU, and
BS at NTHU in Taiwan.

- My past research spans a wide range of Machine

Learning application for astrophysics, including black
hole image and dark matter/strong lensing ﬁ

- ML Research Interest: ML for Natural Science, ML
for drug discovery & Protein Design

- Previous ML experience: Genentech Postdoc with
Prof. Kyunghyun Cho, Simons Foundation/Flatiron
Institute (CCA), Google Research (2021)

- | like: Traveling, Jazz, Bouldering/Climbing, Brewing
hard cider



Prescient Design@Genentech/Roche

Kyunghyun Cho

Viadimir Richard Bonneau
Gligorijevic
Co-Founder and Senior
Director, Prescient
Design, Genentech

Co-Founder and
Executive Director,
Prescient Design,

Genentech

Co-Founder and Senior
Director, Prescient
Design, Genentech

Prev. @Flatiron Institute/NYU NYU CS/Data Science

Founded in Jan 2021,
focusing on machine
learning for Protein
Design/drug discovery
Acquired by
Genentech/Roche ~
August 2021

Around 70 people in the
team (ML Scientist/
Engineer, Bio/Chem)
We’re hiring!

Prescient
Design

A Genentech Accelerator



.* 'T l\—( /"‘ '
040 e 1
- M ] -~
/ o3 X, 2y
s s /‘.. %
""/‘,4 Ve 050 IR
AR NS
r -, D & .’) »

Bhoal  (eid) Sehy, KO

TMMS Y% ﬂaf = s-gsutf

=7
N =3,1418 I/'\S‘lr\ /\,,
f’:v"ﬁr

brgtfo o sy
pt=T-2a "‘y) (.y } >
= gx =4h- 3)7; 4




ACS PERIODIC TABLE OF ELEMENTS

W Chemistry for Life®

Alicall Metals . Mot metals 8 Atomic Number

o
o
= Allcaline Earth Metals Hakogens
E‘l W 2 etals [ Halog

- Transtion Metals . Noble Gases

[
o0

Symbol

Name

Other Metal Lanthanid
. 5 e . - o Average Atomic Mass

B vetalioids B Actinides

¢

OEOROEOERE0
e oo o
e e oo e e o

American Chemical Society www.acs.org/outreach



Atom -> Molecules

NO H,0
Nitrogen Oxide Water Co,
Nitrogen Dioxide Carbon Dioxide

shutterstock.com - 1142362373



Large Molecules
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Amino Acids

Amino Side Carboxyl
Group Chain Group

Polypeptide Chain

Amine-Terminus/ Carboxyl-Terminus/
N-Terminus C-Terminus



Protein folding problem

Protein’s amino acid sequence -> three-dimensional ;j
atomic structure prediction. A CA
at
Entropy Unfolded
The notion of a folding “problem” first emerged
around 1960, with the appearance of the first
atomic-resolution protein structures
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Escherichia coli bacteria Spinach Human

Fig. 1.2 Molecular Machinery Many molecular machines are virtually identical in
all living cells. This is particularly true for molecules that play an essential role in
the processes of life, such as the enzyme glyceraldehyde-3-phosphate dehydro-
genase, which is vital for the metabolism of sugar in all three organisms. This
illustration shows the similar form of the enzyme from a bacterial cell (left), a
plant cell (center), and human cells (right) (5,000,000 X)



How to get Protein Structures: Cryo-EM

protein purification negative stain initial model

initial model re-projections

orientation
refinement

aligned and averaged defocus determination particle alignment and final structure

_ frames and CTF correction classification
subframe collection



How to get Protein Structures: Crystallography




THE 20 COMMON AMINO ACIDS gurome @uowne @ue @momooe
.@CHARGED .@ CHARGED SULFUR CONTAINING

color coded
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pKa 3.71
pKa 1.95 pKa 4 15 pKa 2.16 nKa 2.16 pKa 2.18 pKa 1.95
O pKa 9. 55 pKa 9. 58 pKa 8. 73 pKa 9. 00 NH pKa 1047
Aspartlc acud @ Glutamic aCId e Asparaglne o Glutamlne Prollne
(Asp) (Glu) (Asn) (GIn) (Pro)
(0]
pKa 10 67
pKa 8.14
OH
pKa 2.18 pKa 238 pKa 2.15 pKe 1.91 pKa 2.16
pKa 9.09 N pKa 9. 34 pKa 9. 16 pKa 10.28 NH pKa 9.08 NH2
enyla anlne ryptophan ysine ysteine ethionine
Ph lal T toph L 0 Cyst Methioni
(Phe) (Trp) (Lys) (Cys) (Met)

pKa 12.10 NHZ

pKa 6.04 @
PKa 224 /\/\Hkm@ 2.03 PKa 1.70 /\HLPK‘? 213 /kH‘\ﬂKa 2.20
pKa 9. 04 pKa 9. 00 pKa 9. 09 pKa 9. 05 pKa 8. 96
HO

T Tyrosme Arginine Hlstldlne Serlne Threonlne
(Tyr) (Arg) Q (His) (Ser) 9 (Thr) o



A GUIDE TO THE TWENTY COMMON AMING ACIDS

AMINO ACIDS ARE THE BUILDING BLOCKS OF PROTEINS IN LIVING ORGANISMS. THERE ARE OVER 500 AMINO ACIDS FOUND IN NATURE - HOWEVER, THE HUMAN GENETIC CODE
ONLY DIRECTLY ENCODES 20. ‘ESSENTIAL AMINO ACIDS MUST BE OBTAINED FROM THE DIET, WHILST NON-ESSENTIAL AMINO ACIDS CAN BE SYNTHESISED IN THE BODY.
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Note: This chart only shows those amino acids for which the human genetic code directly codes for. Selenocysteine is often referred to as the 21st amino acid, but is encoded in a special manner.

In some cases, distinguishing between asparagine/aspartic acid and glutamine/glutamic acid is difficult. In these cases, the codes asx (B) and glx (Z) are respectively used

AAT. ARC
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Critical Assessment of protein Structure Prediction (CASP)

e Biennial global blind-prediction experiment (since 1994)
e Fully blind evaluation — no data leakage — highest credibility

Protein folding example, where predictions (in blue) are
aligned to the known protein structure (in green) in the
Protein DataBase (PDB). (image source: DeepMind blog)




David Baker’s Lab

- Professor at Univ Washington

- Known for computational Protein Design

- Rosetta (physics-based)

- RoseTTAFold (ML for protein structure prediction)
- Protein MPNN (ML for protein inverse folding)

- RF diffusion (generative model for protein)

David Baker’s Lab



Rosetta (Physics based structure prediction)

DL hyperparam optMSA 2007660 0000 0001 fragments abiniio SAVE ALL OUT 1012601 318

Stage: FastRelax 7.70% Complete And rew Leave r_Fay

CPU time: D hr 42 min 44 sec Model: 8 Step: 140996

Contact - Total credit: 275095 - RAC: 449.461 Accepted Energy: -169.6272

BOINC Synergy Accepted RMSD: 12.84 & Rosetta Com
Low Energy: -169.6272

Rosetta@home v4.2 http://boinc.bakerlab.org/rosetta/ 0% RMSD: 12.84




Alphafold Il

John Jumper (DeepMind)

Article

Highly accurate protein structure prediction
with AlphaFold

https://doi.org/10.1038/s41586-021-03819-2

Received: 11 May 2021

Accepted: 12 July 2021

Published online: 15 July 2021

Open access

| ™ Check for updates

John Jumper'*Z, Richard Evans', Alexander Pritzel'*, Tim Green'*, Michael Figurnov'*,
Olaf Ronneberger'#, Kathryn Tunyasuvunakool', Russ Bates'#, Augustin Zidek'*,

Anna Potapenko'*, Alex Bridgland'*, Clemens Meyer'*, Simon A. A. Kohl'4,

Andrew J. Ballard"*, Andrew Cowie'*, Bernardino Romera-Paredes"*, Stanislav Nikolov'*,
Rishub Jain'#, Jonas Adler', Trevor Back', Stig Petersen’, David Reiman’, Ellen Clancy’,
Michal Zielinski', Martin Steinegger??, Michalina Pacholska', Tamas Berghammer',
Sebastian Bodenstein', David Silver', Oriol Vinyals', Andrew W. Senior', Koray Kavukcuoglu',
Pushmeet Kohli' & Demis Hassabis'**

Proteins are essential to life, and understanding their structure canfacilitate a
mechanistic understanding of their function. Through an enormous experimental
effort!™*, the structures of around 100,000 unique proteins have been determined®, but
this represents a small fraction of the billions of known protein sequences®”. Structural
coverage is bottlenecked by the months to years of painstaking effort required to
determine asingle proteinstructure. Accurate computational approaches are needed
toaddress this gap and to enable large-scale structural bioinformatics. Predicting the
three-dimensional structure thataprotein willadopt based solely onits amino acid
sequence—the structure prediction component of the ‘protein folding problem®—has
beenanimportant open research problem for more than 50 years’. Despite recent
progress'®, existing methods fall far short of atomic accuracy, especially when no
homologous structure is available. Here we provide the first computational method
that canregularly predict protein structures withatomic accuracy evenin casesin which
no similar structure is known. We validated an entirely redesigned version of our neural
network-based model, AlphaFold, inthe challenging 14th Critical Assessment of protein
Structure Prediction (CASP14)®, demonstrating accuracy competitive with
experimental structures inamajority of cases and greatly outperforming other
methods. Underpinning the latest version of AlphaFoldis a novel machine learning
approach thatincorporates physical and biological knowledge about protein structure,
leveraging multi-sequence alignments, into the design of the deep learning algorithm.



Protein folding problem

Protein’s amino acid sequence -> three-dimensional ;j
atomic structure prediction. A CA
at
Entropy Unfolded
The notion of a folding “problem” first emerged
around 1960, with the appearance of the first
atomic-resolution protein structures
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Network  Alphafold2 1
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The Structure Module predicts a rotation + translation to place each residue. O

A small network predicts side chain chi angles. The final structure is run through a relaxation process.

P17
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The Structure Module predicts a rotation + translation to place each residue.

A small network predicts side chain chi angles. The final structure is run through a relaxation process.
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Multiple Sequence Alignment (MSA)
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Distance Matrix



https://docs.google.com/file/d/1cDD9606yliH9VLqqs_t-Rs60WLN1WDt6/preview

Network  Alphafold2 : !
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A small network predicts side chain chi angles. The final structure is run through a relaxation process.
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What is going on in the swap?

1D of many proteins and 2D of one protein -> Update both
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http://progress_bar_id

Representations: Swap between 1D and 2D

Amino Acids

Amino Acids

m.
»-'r

Templates

AA: Amino
Acids in 1
Protein
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Triangular Attention

b Pair representation Corresponding edges c Triangle multiplicative update Triangle multiplicative update Triangle self-attention around Triangle self-attention around
(r,r,c) in a graph using ‘outgoing’ edges using ‘incoming’ edges starting node ending node

' 2 R RS PR

S
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Vignette 1: Triangular Attention

-> Take 3 points A, B, C
4 |[f Distance AB and distance BC known strong
constraint on AC (triangle inequality)
4 Evolution & Sequence gives information
about relations between residues
- Pair Embedding encodes relations
€ Update for pair AC should depend on BC, AB
4 All about who communicates in the network,
not what is computed




What is going on in the swap?

Concepts: Affine Transforms, Triangle Inequality
We preserve triangle inequality but don’t care about overlaps till the very end.

b C  Triangle multiplicative update Triangle multiplicative update Triangle self-attention around Triangle self-attention around
pair representation corresponding edges using "outgoing"” edges using “incoming" edges starting node ending node
(rrc’) in a graph
i ik

" 9)— i i ] (D—i

. ! | 4 / fl
. ik ik Ki K i ki Kj

il (i) ® ki K| / \
JRORO) i O O

O O
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Structure Prediction

Pair ) ° 4,«1
! &
representation W’
(rr.c) by

x‘
%
°
d s I 8 blocks (shared weights) ?
Predict X angles
and compute all
atom positions
y
o — R
{p ISingle repr. (r,c) — 4 'Single repr. (r,c) =
Predict relative
rotations and
translations
Ly
o —L ]
o- ) AR =
Backbone frames
(r, 3x3) and (r,3) Backbone frames

(initially all at the origin) \_ (r, 3x3) and (,3) o




Vignette 2: Structure module

—  End-to-end folding instead of gradient descent

—  Protein backbone = gas of 3-D rigid bodies
(chain is learned!)

Image: Dcrjsr, vectorised Adam Redzikowski (CC BY 3.0, Wikipedia)

—  3-D equivariant transformer architec.c Abug.:;w
the rigid bodies / backbone
o Also builds the side chains from torsion

angles

Ilteration 8

Target: T1041

'MRC



lnductive Bias for Deep Learning Models © 2020 DeepMind Technologies Limited

. . Convolutional Networks Recurrent Networks
@ (e.g. computer vision) (e.g. language)
e data in regular grid e data in ordered sequence
. e information flow to local neighbours ‘ e information flow sequentially

~

Graph Networks (e.g. recommender

Attention Module (e.g. language)
systems or molecules) @

e data in unordered set
e data in fixed graph structure “ e information flow dynamically controlled
e information flow along fixed edges “ by the network (via keys and queries)

'

Dzmitry Bahdanau Jacobs, KyungHyun Cho, Yoshua Bengio (ICLR 2015) @



Training loss functions

0.5LgapE + 0.5Laux + 0.3L4ist + 2.0Lmsa + 0.01Lcons training
05EFAPE .'s O-5»Caux + 0-3£dist + 2-OLmsa o 0-Olﬁconf o 0-01£exp resolved 1 1-O£viol ﬁne'tuning

Training losses are designed to emphasize
contributions from different architectural parts:
e | _:averaged FAPE and torsion angle losses
from intermediate structure module layers
s & distogram prediction (cross-entropy)
e L __:masked-MSA prediction (cross-entropy)

Credit: Amy Lu


https://amyx.lu/data/alphafold.pdf

Test set of CASP14 domains

Ablation study of each compoment

With self-distillation training —

w?

Baseline - R
No templates

No auxiliary distogram head -

i

No raw MSA _
(use MSA pairwise frequencies)

No IPA (use direct projection) - ==

No auxiliary masked MSA head - o,

No recycling ==

No triangles, biasing or gating _|

(use axial attention)

No end-to-end structure gradients _ &
(keep auxiliary heads) v

No IPA and no recycling 4 —=—_.

Test set of PDB chains

T T

T
-20 -10 0

GDT difference compared
with baseline

IDDT-Ca difference
compared with baseline



AlphaFold 2 in CASP challenge

Median Free-Modelling Accuracy

100

ALPHAFOLD 2

80

60 ALPHAFOLD

GDT

40

20

CASP7 CASP8 CASP9 CASP10 CASP11  CASP12 CASP13  CASPI14
2006 2008 2010 2012 2014 2016 2018 2020

CASP

T1037 / 6vr4d T1049 / 6yaf
90.7 GDT 93.3 GDT
(RNA polymerase domain) (adhesin tip)

® Experimental result

® Computational prediction



Comparison to Alphafold 1
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Alphafold 2 vs Alphafold 3 (improvement)

AF3 has these improvement compare with AF2

multiple proteins
DNA

RNA

small molecule ligands interaction with proteins Chia-Chun (Alden) Hung
Improved Antibody structures prediction
Pseudo-opensource model

Isomorphic Lab

Remove equivariant models, infuse diffusion model in protein structure prediction




Alphafold 3 archecture
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1. Input Preparation 2. Representation Learning

3. Structure Prediction
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THE NOBEL PRIZE

DEile Demis John M.
ELG Hassabis Jumper

“for computational “for protein structure prediction”
protein design”

THE ROYAL SWEDISH ACADEMY OF SCIENCES




Live Demo

- PDB

- uniprot
- ColabFold

-  ProteinMPNN
- RFdiffusion



https://www.rcsb.org/
https://www.uniprot.org/
https://colab.research.google.com/github/sokrypton/ColabFold/blob/main/AlphaFold2.ipynb
https://colab.research.google.com/github/dauparas/ProteinMPNN/blob/main/colab_notebooks/quickdemo.ipynb
https://colab.research.google.com/github/sokrypton/ColabDesign/blob/v1.1.1/rf/examples/diffusion.ipynb

What about the inverse folding?

. o INVERSE
=

FOLDING

M-K-L-V-I-N-G-E-R...




A ChainA Chain B
‘ ProteinMPNN
({974 / Backbone Encoder \ K Sequence Decoder\
- J‘ f ;
= | Update I
edges Update i Probabilities
i nodes A I
' Iterative
A x| decodi
3x_ Update 4 1 Random i ecoding
[ nodes 3x ! decoding '
I 1 I
order Sample
, ¥ ' ¥
Input: protein Nodes <! Nodes <€
backbone \ > Edges > Edges A
coordinates
J \ J Output: protein
Q - sequence
B  Fixed left to right decoding C 'S
1234 5['\\ , , Tied across chains
G ExJ _ T~ -autoregressive decoding order
Chain A =~ -fixed amino acids (context) Lj v
. : - sequence context not used , 1113 12D
ProteinMPNN decoding - sequence context used ¢ E P E P E P
35124 \ , ChainA  ChainB  Chain C
GE - La < 4

Chain A .
(J Dauparas et al. 2022 Science)



Live Demo

- PDB

- uniprot
- ColabFold

-  ProteinMPNN
- RFdiffusion



https://www.rcsb.org/
https://www.uniprot.org/
https://colab.research.google.com/github/sokrypton/ColabFold/blob/main/AlphaFold2.ipynb
https://colab.research.google.com/github/dauparas/ProteinMPNN/blob/main/colab_notebooks/quickdemo.ipynb
https://colab.research.google.com/github/sokrypton/ColabDesign/blob/v1.1.1/rf/examples/diffusion.ipynb

Why do we need ML for protein design

- Even if we could actually predicture the structure of protein, the possible
amino acid sequence is more than 20”*300.
- Generative model for protein is needed



Family of generative models

GAN: Adversarial
training

VAE: maximize
variational lower bound

Flow-based models:
Invertible transform of
distributions

Diffusion models:
Gradually add Gaussian
noise and then reverse

Generator

G(z)

Decoder
po(x|z)

Inverse

Y

Discriminator
* b
X VA
Flow
X > —»| Z
f(x)
xo*__: X1<___= X >

(=)




Diffusion Model (& Score matching)

Forward SDE (data — noise)
x(0) dx = f(x,t)dt + g(t)dw

score function

dx = [f(x,£) — ¢* (t) dt + g(t)dw

Reverse SDE (noise — data)

“A painting of a fox sitting in a field at
sunrise in the style of Claude Monet”

Diffusion Model & Score matching
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Example from Imagen

“A photo of a Shiba Inu dog “A blue jay standing on a “A brain riding a rocketship
with a backpack riding a bike. large basket of rainbow heading towards the moon*“
It is wearing sunglasses and macarons”

a beach hat “



Example of Stable diffusion




Native structure Block adjacency
constraints Samples

CA-CA distance Ci—Ni+1 bond

0.8 08 0.8
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v (deg)

i Tudor Achim

[ Native

: Diffuse

00 (arXiv: 2205.15019) BIO
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https://arxiv.org/abs/2205.15019

RFdiffusion: diffusion model for protein

Watson et al (bioarXiv 2023)
INSTITUTE FOR PROTEIN DESIGN, UW
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Diffusion Model
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Figure 1: RFdiffusion is a denoising diffusion probabilistic model with RoseTTAFold
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Fig. 6: De novo design of protein-binding proteins.

From: De novo design of protein structure and function with RFdiffusion
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De novo designed proteins neutralize lethal
snake venom toxins

https://doi.org/10.1038/s41586-024-08393-x
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Open access

™ Check for updates

Susana Vazquez Torres'**, Melisa Benard Valle*, Stephen P. Mackessy®,

Stefanie K. Menzies®”®, Nicholas R. Casewell®”, Shirin Ahmadi®, Nick J. Burlet®,

Edin Muratspahié'?, Isaac Sappington??®, Max D. Overath®, Esperanza Rivera-de-Torre®,
Jann Ledergerber®, Andreas H. Laustsen®, Kim Boddum?®, Asim K. Bera'?, Alex Kang'?,

Evans Brackenbrough'?, lara A. Cardoso®, Edouard P. Crittenden®, Rebecca J. Edge'®,

Justin Decarreau'?, Robert J. Ragotte'?, Arvind S. Pillai'?, Mohamad Abedi'?,

Hannah L. Han'?, Stacey R. Gerben'?, Analisa Murray'?, Rebecca Skotheim'?, Lynda Stuart'?,
Lance Stewart"?, Thomas J. A. Fryer*", Timothy P. Jenkins** & David Baker'*'?*

Snakebite envenoming remains a devastating and neglected tropical disease,
claiming over 100,000 lives annually and causing severe complications and
long-lasting disabilities for many more** Three-finger toxins (3F Tx) are highly toxic
components of elapid snake venoms that can cause diverse pathologies, including
severe tissue damage®and inhibition of nicotinic acetylcholine receptors, resulting in
life-threatening neurotoxicity*. At present, the only available treatments for snakebites
consist of polyclonal antibodies derived from the plasma of immunized animals,
which have high cost and limited efficacy against 3FTxs*”’. Here we used deep learning
methods to de novo design proteins to bind short-chain and long-chain a-neurotoxins
and cytotoxins from the 3F Tx family. With limited experimental screening, we obtained
protein designs with remarkable thermal stability, high binding affinity and near-
atomic-level agreement with the computational models. The designed proteins
effectively neutralized all three 3FTx subfamilies in vitro and protected mice from
alethal neurotoxin challenge. Such potent, stable and readily manufacturable
toxin-neutralizing proteins could provide the basis for safer, cost-effective and widely
accessible next-generation antivenom therapeutics. Beyond snakebite, our results
highlight how computational design could help democratize therapeutic discovery,
particularly in resource-limited settings, by substantially reducing costs and resource
requirements for the development of therapies for neglected tropical diseases.




Live Demo

- PDB

- uniprot
- ColabFold

-  ProteinMPNN
- RFdiffusion



https://www.rcsb.org/
https://www.uniprot.org/
https://colab.research.google.com/github/sokrypton/ColabFold/blob/main/AlphaFold2.ipynb
https://colab.research.google.com/github/dauparas/ProteinMPNN/blob/main/colab_notebooks/quickdemo.ipynb
https://colab.research.google.com/github/sokrypton/ColabDesign/blob/v1.1.1/rf/examples/diffusion.ipynb

= AlphaFold Based Tool to
: G Predict Mutations Causing
‘1* Genetic Diseases




Weight

p 3 > 2 Model outputs
Model inputs .
P Linear (1, L, K ) Structure prediction
reference sequence (L) recycle position & pair embedding (x 4) (reference sequence)
N 0 @ > ' <
sampled variants (]NLL) Cinear (L, 1,K__,) I
‘ I I" i - 'S ™ /
T mask all ) /
- 2 = variant pair repr. Variant pathogenicity score s
— positions LLK ) > — (LLK,) p g y 3
MSA,.(N,al' L) 7 Masked MSA 3.5 Vpair. 48 |ayer
— Evoformer
rEsk & MSA repr. [ I
(5 5 sample (Nmsa’ L’ Kmsa) K & ( msa’ L Kmsa)
— = ’ “ J
Linear (N__, L. K__)
_ — — S - ~/
: ; C
10d ‘. ; Primates: - PRI
sl : ® MAF > 1e-3, total 9.7e4 = gL-a_'_‘_j_H 2"
: ; Bl S oo e B BB
; Humans: % 8l S iy
04+ : ‘ é- PV A
! ® MAF > 2e-4, total 1.2e5 e ol ady (.5
! [H control =t adeTy
y € 1e-5<MAF < 2e-4, total 1.1e6 patients sequence
0.2+ !
: sample from unobserved, Known benign De novo Multiplexed assay
: match counts of benign and pathogenic variants of of variant effect
benign ! pathogenic variants (ClinVar) rare disease (ProteinGym)

(Jun Cheng et al., Science 2023)



Where are we at Al for Biology?

e \Where are we at for drug
discovery?

e Where are we at for protein
dynamics?

e \Where are we at for genetics?




Some useful Resources

- PDB

- uniprot
- ColabFold

- ProteinMPNN

- REdiffusion

- Alphafold server
- Foldseek

- Kaggle
- AlphafoldDB



https://www.rcsb.org/
https://www.uniprot.org/
https://colab.research.google.com/github/sokrypton/ColabFold/blob/main/AlphaFold2.ipynb
https://colab.research.google.com/github/dauparas/ProteinMPNN/blob/main/colab_notebooks/quickdemo.ipynb
https://colab.research.google.com/github/sokrypton/ColabDesign/blob/v1.1.1/rf/examples/diffusion.ipynb
https://alphafoldserver.com/
https://github.com/steineggerlab/foldseek
https://www.kaggle.com/competitions
https://alphafold.ebi.ac.uk/

Image Credit: Event Horizon Telescope Collaboration
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Karl Schwarzschild

SCHWARZSCHILD METRIC

describes the shape of spacetime around a

spherical source, where g, is the spacetime metric:
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Relativistic Jet T

Event horizon

Accretion disc

Singularity —

At the very centre of a black hole, matter hé apsed - "
into a region of infinite density called a sing
All the matter and energy that fall into the black
The prediction of infinite density by general relativity is:
the breakdown of the theory where quantum effects bect

Singularity

Event horizon
This is the radius around a singularity where matterand energj
cannot escape the black hole’s gravity: the point retum.
This is the "black” part of the black hole.

Photon sphere

Although the black hole itself is dark, photons are emitted from neardj N P h
hot plasma in jets or an accretion disc (see below). In the absencé of Ggavity, O fOf?
these photons would travel in straight lines, but just outside the event hogizon . S h ere
of a black hole, gravity is strong enough to bend their paths so that we see :0

a bright ring surrounding a roughly circular dark “shadow”,

Relativistic jets )@
When a biack hole feeds on stars, gas or dust, the meal produces jets of icles
and radiation blasting out from the black hole’s poles at near light speed.

They can extend for thousands of light-years into space.

Innermost stable orbit
The inner edge of an accretion disc is the last place that material can \
orbit safely without the risk of falling past the point of no return.

Accretion disc
A disc of superheated gas and dust whirls around a black hole at immense speeds,

N . .
Inng @%@ap/e orbi
.



SIZE COMPARISON:
THE M87 BM(FACK HOLE

OUR SOLAR SYSTEM

PLUI? VOYAGER 1

~ 40 uas

v # HST best resolution ~ 0.04 as
# ALMA best resolution ~ 0.01 as




Black Hole Observation

- Wavelength (230GHz,
~1.3mm)

- Right size of the
telescope ~ (13 Million
meters = diameter of the
earth)

ALMA Telescope Credits: ESO



Black Hole Observation

Wavelength (230GHz,
~1.3mm)

Right size of the
telescope ~ (13 Million
meters = diameter of
the earth) v

Event Horizon Telescope (EHT)
A Global Network of Radio Telescopes

Atacama Large Millimeter/
submillimeter Array
CHAJNANTOR PLATEAU, CHILE

Atacama Pathfinder EXperiment

j) CHAJINANTOR PLATEAU, CHILE

IRAM 30-meter Telescope
PICO VELETA, SPAIN

James Clerk Maxwell Telescope

i MAUNA KEA, HAWAII

Large Millimeter Telescope

J SIERRA NEGRA, MEXICO

Submillimeter Array
MAUNA KEA, HAWAI

Submillimeter Telescope
MOUNT GRAHAM, ARIZONA

S4® \ South Pole Telescope

~"| National Radio
/' | Astronomy
NRAO| Observatory

Credits: EHT

&) SOUTH POLE STATION

Greenland Telescope Project

' THULE AIR FORCE BASE




Radio Interferometry
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Figure 1. (u, v)-coverage (left panel) and visibility amplitudes (right panel) of M87 for the high-band April 11 data. The (u, v)-coverage has two primary orientations,
east-west in blue and north-south in red, with two diagonal fillers at large baselines in green and black. Note that the Large Millimeter Telescope (LMT) and the
Submillimeter Telescope (SMT) participate in both orientations, and that the LMT amplitudes are subject to significant gain errors. There is evidence for substantial
depressions in the visibility amplitudes at ~3.4 G and ~8.3 GA. The various lines in the right panel show the expected behavior of (dotted line) a Gaussian, (dashed
line) a filled disk, and (green area) a crescent shape along different orientations. The image of M87 does not appear to be consistent with a filled disk or a Gaussian.



@ Machine Learning @ Traditional Method

THE ASTROPHYSICAL JOURNAL LETTERS, 875:L4 (52pp), 2019 April 10 The EHT Collaboration et al.

Team 1 (RML) Team 2 (RML) Team 3 (CLEAN) Team 4 (CLEAN)

M EE 0000
0.0 2.5 5.0 0 2 4

Brightness Temperature (10 K)

M 000 ]
0 2 4

Figure 4. The first EHT images of M87, blindly reconstructed by four independent imaging teams using an early, engineering release of data from the April 11
observations. These images all used a single polarization (LCP) rather than Stokes /, which is used in the remainder of this Letter. Images from Teams 1 and 2 used
RML methods (no restoring beam); images from Teams 3 and 4 used CLEAN (restored with a circular 20 pas beam, shown in the lower right). The images all show
similar morphology, although the reconstructions show significant differences in brightness temperature because of different assumptions regarding the total compact
flux density (see Table 2) and because restoring beams are applied only to CLEAN images.



Image reconstruction (for EHT)

Regularized Maximum Likelihood (RML) Clean (Deconvolution)
- Used for reconstructing M87* image for - Used for reconstructing M87* image for
EHT EHT
- Prior and forward model (image -> - Also used for most of the Images
visibility) needed Reconstruction for Radio Interferometry
- Combining with Normalizing Flow -> - No prior “hard coded”, but require lots
Deep Probabilistic Imaging of human expertise and experience on

hyperparameter tuning...
- Hard to evaluate uncertainty



Measurements

Infinite Number
of Possibilities

Slides from : Katie Bouman



Bayesian Model Inversion
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Slides from : Katie Bou



Bayesian Model Inversion
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Slides from : Katie Bou



Bayesian Model Inversion
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Slides from : Katie Bouman



Best Image

/\

Xaiap = argimax. [1Og p(Y|X> =T log p(X)]

—

Likelihood Prior

Slides from : Katie Bouman



Simulated EHT Image Reconstruction

Measurements \

b
@

" East-West Frequency (ly Reconstruction

B
'---“

Courtesy of Avery Broderick

North-South Frequency (v)

True Image

Slides from : Katie Bouman Bouman, et al., CVPR, 2016



EHT-imaging
Demo )

https://qgithub.com/achael

.\ \I{\::; ] N
Andrew Chael
(Princeton)


https://docs.google.com/file/d/1BBgXKQZXlJwDKJ9STU9RZeLTRsrbBfkI/preview
https://github.com/achael

Uncertainty quantification is important!

Standard
Deviation

Fractional Standard
Deviation

from M87 Paper |V

Slides from : He Sun, Katie Bouman


https://arxiv.org/abs/1906.11241

Deep Probabilistic Imaging: Uncertainty Quantification and Multi-modal
Solution Characterization for Computational Imaging

He Sun (Caltech) Katie Bouman (Caltech)

Sun & Bouman (AAAI 2021, 2010.14462)



https://arxiv.org/abs/2010.14462

Deep Probabilistic Imaging

Big question: Given observable y, what's the distribution of image x?

THE ASTROPHYSICAL JOURNAL LETTERS, 875:L6 (44pp), 2019 April 10 The EHT Collaboration et al.
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Figure 1. (u, v)-coverage (left panel) and visibility amplitudes (right panel) of M87 for the high-band April 11 data. The (1, v)-coverage has two primary orientations,
east-west in blue and north-south in red, with two diagonal fillers at large baselines in green and black. Note that the Large Millimeter Telescope (LMT) and the
Submillimeter Telescope (SMT) participate in both orientations, and that the LMT amplitudes are subject to significant gain errors. There is evidence for substantial
depressions in the visibility amplitudes at ~3.4 G\ and ~8.3 GA. The various lines in the right panel show the expected behavior of (dotted line) a Gaussian, (dashed
line) a filled disk, and (green area) a crescent shape along different orientations. The image of M87 does not appear to be consistent with a filled disk or a Gaussian.
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Regularized Maximum Likelihood (RML)

Best Image

/\

Xiap = argimax, [1Og p(X‘Y)i

= argmax, [log p(y[x) + log p(x)

\/ \/

Likelihood Prior

Slides from : He Sun, Katie Bouman



Posterior Exploration

x ~ p(x|y)

The posterior can be sampled directly using
Markov Chain Monte Carlo (MCMC) method.

“Hybrid Very Long Baseline Interferometry Imaging and Modeling with themis”, ApJ 2020

Slides from : He Sun, Katie Bouman 88


https://iopscience.iop.org/article/10.3847/1538-4357/ab9c1f/meta

Posterior Exploration

x ~ p(x|y)

Or we could use a Neural Networks (Normalizing Flow)!

Slides from : He Sun, Katie Bouman 89



Introduction to Normalizing Flow

Normalizing Flows

A normalizing flow transforms a simple distribution into a complex one by
applying a sequence| of invertible transformation functions.

f1(zo) fi(zi—1) fiy1(24)
@ - . @ o @ : x
/,’ \\\ /,’ \\\ 4 - b N\

/ \ / \ / \
' \ /! \ 7/ \
1 \ 1 \ 1 \
| f | E 1 | i{ E 1 | f!QP 59 \
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Slides from : He Sun, Katie Bouman

Characterizing Uncertainty & Multimodal Solutions

Truth Blurred Truth
b -
60 uas 60 uas
RML results from different initializations DPl samples from learned network




Exploring the Posterior

Mean (u) Std. Dev. (0)

(@]
i —
. Mode #2 N ¥
S ﬁ.
~
o)
cC (V5]
O | s =2
[7,) —
c )
] c
= =
) w g
wl o
pd T ()
n aQa o
& (@]
. =
)
Mode #1 #:=%% ¢ 0
i M | N | e

1.6e-3 0.0 6e-5 0.0

t-SNE Dimension 1
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Explorlng the Posterior
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Real M87 results: closure quantities + vis amp + MEM+TV2

Apr. 5, 2017 Apr. 6, 2017 Apr. 10, 2017 Apr. 11, 2017

7e3

Mean

2.8e-4

(srd |

0.0

Std. Dev.
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THE ASTROPHYSICAL JOURNAL, 975:201 (22pp), 2024 November 10 Feng, Bouman, & Freeman

Measurement Log-Likelihood
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logp(y | -) -256
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(a) ReaINVP variational posterior \\“-\\
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(b) Score-based prior

Figure 1. Method illustration. The CIFAR-10 prior was used for these examples; images are shown as 32 x 32 pixels on a [0, 1] scale. At a high level, we optimize a
variational distribution ¢, to approximate the image posterior py( - |y) given a score-based prior py and log likelihood based on EHT measurements. Panel (a) illustrates
our particular variational distribution: a ReaNVP with parameters ¢. At each optimization iteration i, the measurement log likelihood (Equation (2)) and the log
density under the score-based prior of each sample x from g, = g  are evaluated. The average gradient is computed with respect to ¢ to update 7. In other words,
q. is optimized to produce samples that have high probability under both measurement likelihood and prior. Panel (b) zooms in to the score-based prior. A score-based
prior is based on a score-based diffusion model, a deep generative model with parameters 6, that is trained on images from a target prior. Once trained, the diffusion
model generates samples from a generative image distribution p,. There is an analytical formula for computing the ELBO bg(x) of the log probability log p, (x) for any
image x, even for out-of-distribution images and images of pure noise.
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Summary

® Deep Probabilistic Imaging (DPI) using variational methods and generative
model to approximate the posterior distribution of reconstructed image;

® DPI can capture multiple feasible solutions and quantify the uncertainty;
® DPI is preliminarily tested on EHT simulated data and EHT2017 M87 data.
® Generalizable to other parameter estimation problems
i
| 97

Slides from : He Sun, Katie Bouman
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Particle Physics in a Nutshell 1/2

~3x10-'m ~3x10-10m ~10-10m ~10-5m
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Slides Credit: Dennis Noll [1]



Standard Model of Elementary Particles

three generations of matter interactions / force carriers
(fermions) (bosons)
I I 111
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Feynman Diagram

Richard Feynman
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Feynman Diagram 101

Richard Feynman
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Particle Physics in a Nutshell 2/2
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Very Precise Simulations Available ... But Expensive!
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What analysis looks like...
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Machine Learning

Supervised Learning Unsupervised Learning Reinforcement Learning



What's Reinforcement Learning

ﬂ;wronment
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Agent
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Successful example of Reinforcement Learning

LLM with CoT +
Reinforcement Learning

AlphaGo



AlphaGo Fan/Lee (2016)
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Mastering the game of Go with deep neural networks and tree search (DeepMind, Nature 2016)



https://www.nature.com/articles/nature16961

Learning from Human Expert

Move

Generating new self-play to

prevent overfitting in RL

—
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Reinforcement learning of value networks

The final stage of the training pipeline focuses on position evaluation,
estimating a value function v#(s) that predicts the outcome from posi-
tion s of games played by using policy p for both players?®-*°

vP(s)=Elz{s;=s, a,..7~p]

Ideally, we would like to know the optimal value function under
perfect play v*(s); in practice, we instead estimate the value function
v?, for our strongest policy, using the RL policy network p,,. We approx-
imate the value function using a value network v(s) with weights 6,
vg(s) v (s) ~ v*(s). This neural network has a similar architecture
to the policy network, but outputs a single prediction instead of a prob-
ability distribution. We train the weights of the value network by regres-
sion on state-outcome pairs (s, z), using stochastic gradient descent to
minimize the mean squared error (MSE) between the predicted value
v4(s), and the corresponding outcome z

Af x (z—ve(s))

Ove(s)
0

The naive approach of predicting game outcomes from data con-
sisting of complete games leads to overfitting. The problem is that
successive positions are strongly correlated, differing by just one stone,
but the regression target is shared for the entire game. When trained
on the KGS data set in this way, the value network memorized the
game outcomes rather than generalizing to new positions, achieving a
minimum MSE of 0.37 on the test set, compared to 0.19 on the training
set. To mitigate this problem, we generated a new self-play data set
consisting of 30 million distinct positions, each sampled from a sepa-
rate game. Each game was played between the RL policy network and
itself until the game terminated. Training on this data set led to MSEs
0f 0.226 and 0.234 on the training and test set respectively, indicating
minimal overfitting. Figure 2b shows the position evaluation accuracy
of the value network, compared to Monte Carlo rollouts using the fast
rollout policy p; the value function was consistently more accurate.
A single evaluation of vy(s) also approached the accuracy of Monte
Carlo rollouts using the RL policy network p,, but using 15,000 times
less computation.



AlphaGO Zero (2017)
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36 hours — AlphaGo Zero

Lee, which beat world

40 days — AlphaGo Zero surpasses all
previous versions, becomes the best
Go player in the world

reaches level of Alpha Go

champion Lee Sedol in 2016

72 hours — AlphaGo Zero
beats Alpha Go Lee, 100:0

Training days
0 5 10 15 20 25 30 35 40
we AlphaGo Zero 40 blocks  +=e« AlphaGoLee  «e=e« AlphaGo Master

Mastering the game of Go without human knowledge (DeepMind, 2017)



https://www.nature.com/articles/nature24270
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Figure 2 | MCTS in AlphaGo Zero. a, Each simulation traverses the
tree by selecting the edge with maximum action value Q, plus an upper
confidence bound U that depends on a stored prior probability P and
visit count N for that edge (which is incremented once traversed). b, The
leaf node is expanded and the associated position s is evaluated by the
neural network (P(s, -),V(s)) = fo(s); the vector of P values are stored in

Q/ﬁi} H
#oE ) AR

Q /' 2 , 3 W51

the outgoing edges from s. ¢, Action value Q is updated to track the mean
of all evaluations V in the subtree below that action. d, Once the search is
complete, search probabilities 7r are returned, proportional to N'7, where
N is the visit count of each move from the root state and 7 is a parameter
controlling temperature.



Self-play. The best current player ay,, as selected by the evaluator, is used to
generate data. In each iteration, g, plays 25,000 games of self-play, using 1,600
simulations of MCTS to select each move (this requires approximately 0.4 s per
search). For the first 30 moves of each game, the temperature is set to 7= 1; this
selects moves proportionally to their visit count in MCTS, and ensures a diverse
set of positions are encountered. For the remainder of the game, an infinitesimal
temperature is used, 7—0. Additional exploration is achieved by adding Dirichlet
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Figure 6 | Performance of AlphaGo Zero. a, Learning curve for AlphaGo
Zero using a larger 40-block residual network over 40 days. The plot shows
the performance of each player ay, from each iteration i of our
reinforcement learning algorithm. Elo ratings were computed from
evaluation games between different players, using 0.4 s per search (see
Methods). b, Final performance of AlphaGo Zero. AlphaGo Zero was
trained for 40 days using a 40-block residual neural network. The plot
shows the results of a tournament between: AlphaGo Zero, AlphaGo
Master (defeated top human professionals 60-0 in online games), AlphaGo

35 40

Lee (defeated Lee Sedol), AlphaGo Fan (defeated Fan Hui), as well as
previous Go programs Crazy Stone, Pachi and GnuGo. Each program was
given 5s of thinking time per move. AlphaGo Zero and AlphaGo Master
played on a single machine on the Google Cloud; AlphaGo Fan and
AlphaGo Lee were distributed over many machines. The raw neural
network from AlphaGo Zero is also included, which directly selects the
move a with maximum probability p,, without using MCTS. Programs
were evaluated on an Elo scale®®: a 200-point gap corresponds to a 75%
probability of winning.



DeepSeek R1

Summary of DeepSeek-R1:

Overview: Launched in January 2025 by Chinese Al startup DeepSeek, DeepSeek-R1 is an open-source large language
model excelling in advanced reasoning tasks like math, coding, and logic, competing with OpenAl’s o1.

Technology: Built on the 671-billion-parameter DeepSeek-V3-Base, it uses reinforcement learning (RL) with minimal
supervised fine-tuning (SFT) and Group Relative Policy Optimization (GRPO) for efficient training, achieving high
performance (e.g., 79.8% on AIME, 97.3% on MATH-500).

Cost Efficiency: Trained for ~$6 million using ~2,000 Nvidia H800 chips, far less than the $100 million—$1 billion spent by U.S.
competitors. API pricing is significantly lower ($0.55/million input tokens vs. OpenAl’'s $15).

Accessibility: Available under MIT License, supporting commercial use and model distillation, with six smaller distilled models
(1.5B-70B parameters). Powers DeepSeek’s chatbot via web, app, and API.

Performance: Outperforms or matches U.S. models like OpenAl’s 01 and Meta’s Llama in benchmarks, with a top-five ranking
on Chatbot Arena.

Impact on Nvidia Stock (January—May 2025):

Initial Market Shock: DeepSeek-R1’s release on January 20, 2025, triggered a 17% drop in Nvidia’s stock on January 27,
erasing ~$593 billion in market value, the largest single-day loss in Wall Street history. The cost-efficient model raised fears of
reduced demand for Nvidia’s high-end GPUs
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2.2.1. Reinforcement Learning Algorithm & Core technology of DeepSeek

Group Relative Policy Optimization In order to save the training costs of RL, we adopt Group
Relative Policy Optimization (GRPO) (Shao et al., 2024), which foregoes the critic model that is
typically the same size as the policy model, and estimates the baseline from group scores instead.
Specifically, for each question g, GRPO samples a group of outputs {01, 03, , 06} from the old
policy mg,, and then optimizes the policy model mg by maximizing the following objective:

Jorro(6) = E[q ~ P(Q), {01} ~ 7g,,(0lq)]
—Z( (20000 ctip (22D 1] ) - pDis Gl

TH,14 (Ol|q) 70,4 (Ol|q)

ﬂref(oilq) ~lo ﬂref(oilq)
9 (0ilq) 79 (0ilq)
where ¢ and B are hyper-parameters, and A; is the advantage, computed using a group of
rewards {rq,ry,...,rg} corresponding to the outputs within each group:
- mean({rll r2, ", rG})

ri
= Std({rll r2, ", rG}) . (3)

Dk, (”Ollﬂref) = —1, (2)




Next token generation as policy

Step 3: neural network training
100,277 probabilities for next token
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exposition < pretraining worked problems < supervised finetuning
(background knowledge) (problem + demonstrated solution, for imitation)

practice problems < reinforcement learning
(prompts to practice, trial & error until you reach the correct answer)
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2.2.1. Reinforcement Learning Algorithm

Group Relative Policy Optimization In order to save the training costs of RL, we adopt Group
Relative Policy Optimization (GRPO) (Shao et al., 2024), which foregoes the critic model that is
typically the same size as the policy model, and estimates the baseline from group scores instead.
Specifically, for each question g, GRPO samples a group of outputs {01, 03, -+, 06} from the old
policy mg,,, and then optimizes the policy model mg by maximizing the following objective:

Jarro(0) = E[g ~ P(Q), {oi}{L; ~ 70,,(0lq)]

1 wo(oilg) , . [ me(oilg) 1)
Z ( (”Gozd (01|Q)A ,clip (”Gozd o)’ 1-¢1 +e) ) [,BDKL (ma”mdﬂ)

.'Il'ref(Oilq) _lo ﬂref(oilq)

7 (0ilq) 7 (0ilq)
where ¢ and B are hyper-parameters, and A; is the advantage, computed using a group of
rewards {ry,r,...,r¢} corresponding to the outputs within each group:

Dxki (7[9H-7Tref) = = 2)

= mean({rlerI e er})
std({r1,r2,--- ,rc})

3)
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PPO

Proximal Policy Optimization Algorithms

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, Oleg Klimov
OpenAl
{joschu, filip, prafulla, alec, oleg}@openai.com

Abstract

We propose a new family of policy gradient methods for reinforcement learning, which al-
ternate between sampling data through interaction with the environment, and optimizing a
“surrogate” objective function using stochastic gradient ascent. Whereas standard policy gra-
dient methods perform one gradient update per data sample, we propose a novel objective
function that enables multiple epochs of minibatch updates. The new methods, which we call
proximal policy optimization (PPO). have some of the benefits of trust region policy optimiza-
tion (TRPO), but they are much simpler to implement, more general, and have better sample
complexity (empirically). Our experiments test PPO on a collection of benchmark tasks, includ-
ing simulated robotic locomotion and Atari game playing, and we show that PPO outperforms
other online policy gradient methods, and overall strikes a favorable balance between sample
complexity, simplicity, and wall-time.

[cs.LG] 28 Aug 2017

Proximal Policy Optimization Algorithms (OpenAl, 2017)



2.1 Policy Gradient Methods

Policy gradient methods work by computing an estimator of the policy gradient and plugging it
into a stochastic gradient ascent algorithm. The most commonly used gradient estimator has the
form

g=K [Ve log m(ay | St)At] (1)

where 7y is a stochastic policy and A, is an estimator of the advantage function at timestep t.
Here, the expectation Et[ ..] indicates the empirical average over a finite batch of samples, in an
algorithm that alternates between sampling and optimization. Implementations that use automatic
differentiation software work by constructing an objective function whose gradient is the policy
gradient estimator; the estimator g is obtained by differentiating the objective

LFC(9) = &, [1og mo(as | 51) Ay (2)

While it is appealing to perform multiple steps of optimization on this loss L¥¢ using the same
trajectory, doing so is not well-justified, and empirically it often leads to destructively large policy
updates (see Section 6.1; results are not shown but were similar or worse than the “no clipping or
penalty” setting).



2.2 Trust Region Methods

In TRPO [Sch+15b], an objective function (the “surrogate” objective) is maximized subject to a
constraint on the size of the policy update. Specifically,

maximize Et[ (a4 | 5t) /Alt] (3)
0 T0o1a (at | st)
subject to  E¢[KL[mg . (- | s¢), ma(- | 5¢)]] < 6. (4)

Here, 6,4 is the vector of policy parameters before the update. This problem can efficiently be
approximately solved using the conjugate gradient algorithm, after making a linear approximation
to the objective and a quadratic approximation to the constraint.

The theory justifying TRPO actually suggests using a penalty instead of a constraint, i.e.,
solving the unconstrained optimization problem

maximize ]I:Zt mo(a | 51)
0 0514 (at | St)

At = BKL[mg,1q (- | s¢),mo (- | 5¢)] ()



3 Clipped Surrogate Objective

Let r¢(6) denote the probability ratio r,(0) = _molarlse) o, r(0olq) = 1. TRPO maximizes a

Too1q (at | 5¢)’
“surrogate” objective

LCPL(g) = Et[ mo(at | s¢) At] _ R, [rt(O)/it]. (6)

TG01a (at | St)

The superscript C'PI refers to conservative policy iteration [KL02|, where this objective was pro-
posed. Without a constraint, maximization of L¢P! would lead to an excessively large policy
update; hence, we now consider how to modify the objective, to penalize changes to the policy that
move 74(0) away from 1.

The main objective we propose is the following:

LCLIP(g) — I, [min(m(e)zxt, clip(re(6),1 — ¢, 1 + €) Ay) (7)
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Figure 1: Plots showing one term (i.e., a single timestep) of the surrogate function LE“¥ as a function of
the probability ratio r, for positive advantages (left) and negative advantages (right). The red circle on each
plot shows the starting point for the optimization, i.e., r = 1. Note that L“%“/* sums many of these terms.
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AlphaEvolve




e Advancing the frontiers in mathematics and algorithm discovery
e Enhancing Al training and inference

o  AlphaEvolve achieved up to a 32.5% speedup for the_FlashAttention kernel implementation in

Transformer-based Al models

o Designing better algorithms with large language models


https://arxiv.org/abs/2205.14135
https://en.wikipedia.org/wiki/Transformer_%28deep_learning_architecture%29
https://en.wikipedia.org/wiki/Transformer_%28deep_learning_architecture%29

@ Scientist / Engineer

Initial program
Evaluation code with components
to evolve

Prompt template Choice of existing
and configuration or custom LLMs

______ S N

= -

Distributed Controller Loop

parent_program, inspirations = database.sample()

prompt = prompt_sampler.build(parent_program, inspirations)
diff = 1llm.generate(prompt)

child _program = apply diff(parent_program, diff)

results = .execute(child _program)
database.add(child_program, results)

& AlphaEvolve

Best program
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The Strassen algorithm partitions A, B and C'into equally sized block matrices

A {An A12:|, B {311 312], o [Cn 012]’
Ag Ay By1 By Co Oy

with A;j, Bij, Cij € Matyn-1,4n-1 (R). The naive algorithm would be:

{Cn Ci2 ] [An X B11 + A2 X By A1 % Bya + Aj2 X By ]
Cau Oy A2 X By1 + A x By A9 X Byg + Az X Bay

This construction does not reduce the number of multiplications: 8 multiplications of matrix blocks are still needed to calculate the

Cij matrices, the same number of multiplications needed when using standard matrix multiplication.

The Strassen algorithm defines instead new values:

My = (A + Agz) < (B + Bay);
My = (A1 + Agz) < Bui;
M3z = A1 %< (Bya — Ba);
My = Ayy < (Bg1 — Bn1);
Ms = (A1 + Aq2) ¥ Bag;
Mg = (A1 — A1) x(Bu + Bi2);
My = (Aig — Agz) < (Ba1 + Ba),

using only 7 multiplications (one for each M) instead of 8. We may now express the C;; in terms of M,:

[011 012] _ [M1 + My — Ms + My M3 + M;

p Strassen’s 1969 algorithm
Cy Oy M, + M, M, — My + M3 + M



https://en.wikipedia.org/wiki/Strassen_algorithm

Packing problem:Hexagons in Hexagons

The following pictures show n regular hexagons with side 1 packed inside the smallest known
regular hexagon (of side length s ).

—— Outer Hexagon
N Inner Hexagons

side lengths = 4

side lengths = 3.942



New result distribution

Visualization of results across 67 problems.

. Worse than literature bound

. New result . Former new result, got improved upon

. Matched known optimal bound Matched literature bound / N/A

21 22 23 24 25 26

Terry Tao
31 33 34 37
B BB Blogpost:
n . n n Mathematical exploration
41 43 45 47 .
and discovery at scale

51 52 53 ﬂ 55 56 57


https://terrytao.wordpress.com/2025/11/05/mathematical-exploration-and-discovery-at-scale/
https://terrytao.wordpress.com/2025/11/05/mathematical-exploration-and-discovery-at-scale/

Bonus (emergent Phenome):

- Game of Life
- Neural Cellular Automata

John Conway Stephen Wolfram


https://playgameoflife.com/
https://distill.pub/2020/growing-ca/

p.s. We're hiring! Please feel free to reach out!
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